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Section I

INTRODUCTION AND SUMMARY

The objective of the ADCA program is to define the payoffs and ramifications of the
unrestrained application of composite materials to a completely new aircraft. The

specific objective is to obtain a smaller, lighter and less expensive aircraft, capable

of performing an identical advanced tactical mission at lower life cycle costs than a
metal counterpart.

To meet these program objectives, the Supersonic Penetration Interdiction
Fighter (SPIF) mission was selected (as specified in the Statement of Work) based on
the fact that this mission provides the most demanding requirements and yields the
maximum potential payoff from the unrestrained use of composite materials. Further-

more, the SPIF mission addresses, better than any other, the serious 1980 threat of
advanced SAMs and new interceptors.

This final report outlines the procedures and results of the ADCA study. This :
one year program (Figure 1) initiated in July 1976, consisted of four tasks: |
I - Design Requirements
A, I - Preliminary Design ;
~ III - Detail Design i
IV - Payoff and Technology assessment.

In addition to these four tasks a partially in-house funded wind tunnel test was conducted

to provide aerodynamic substantiation of vehicle performance. These tests are still in

progress, however the work completed to date is summarized.

This program indicated that significant cost and weight savings over an equivalent
metal aircraft could be achieved by the logical application of advanced composite

materials to 80% of the airframe. The final savings were a 269 reduction in vehicle

take-off-gross weight and a 21% reduction in the cumulative average fly-away costs.
These savings were primarily due to the resizing of the vehicle which was made possible
by the weight savings resulting from application of composites. Aside from these
savings, this program has also demonstrated that the capability exists, with cur-

rent technology, to design and fabricate an airframe utilizing up to 80% composite
material,
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Section II
MISSION ANALYSIS

2.1 OVERVIEW

Air Force tactical forees must be able to earry out offensive strike missions

against high value targets. But increasingly sophisticated ground defenses and severe

threat environments are making these targets unavailable to existing systems. The
Supersonic Penetration Interdiction Fighter (SPIF) concept holds promise of restoring
the balance to the offensive. Designed specifieally for supersonie attack, SPIF will
penetrate area defenses and terminal threats, achieve a high level of strike effective-

ness, and survive both surface-to-air and air-to-air threats.

However, achieving this step funetion in offensive capability requires the selective
application of advanced tcchnologies to provide the improved performance, smaller
size and affordable cost of a feasible SPII design. Advanced composite structures are
almost unique as a technology for meeting these three mandated criteria. Advanced

composites, in short, will make SPIF happen!

2.2 MISSION PERSPECTIVE

The major concern in future conflicts is the massive, heavily armored assault by

a torce equipped, and supported, for rapid advancement. In addition to offensive

ground elements this force would include the severe defensive fire power of surface-to-air
missiles (SAM's), antiaircraft artillery (AAA), and advanced intereeptors for protection.
Tactieal fighters will be employed for penetration and strike in advanee of the attacking

force; a rapid and well eoordinated attack can be expeeted.

Primary mission emphasis for SFIF would he counter-air, which includes air-
field and concentration area attack, and defense suppression well into enemy territory.
This mission, stripping the enemy of his defenses, air cover and supply bases, would

be an effective counter stroke.

A typical coordinated SPIF strike force would be protected by fighter cover in the
combat area with escort aircraft for immediate defense suppression and jamming
support. Since the strike force would be making a supersonic raid, the escort aircraft
would be SPIF's, configured for the protective role. The nominal strike force would be
composed of four aircraft with strike elements making coordinated attacks while the

escort aircraft suppress any impending threat enroute.
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2.3 MISSION PERFORMANCE CONSIDERATION

Supersonic cruise pays off! Analysis of a SPIF penetrating enemy territory at

high altitude reveals that:

e Probability of i0ss to surface-tolair dcfenscs decreases approximately 159%

(almost linearly) with an increase in penctration Mach number from 0.9 to 2.0

e Probability of loss from air-to-air defenses decreases by 85% as penetration
Mach number is increased from (1,9 to 1.6, with thc rate of improvement

rapidly decreasing above 1.6M.

A nominal 1.6M cruise speed over enemy territory was imposed on ADCA with the
understanding that thc optimuin speed might be slightly above or slightly below this

value, subject to a more lengthy and extensivc analysis.

The flight radius of an SPIF must be addressed in two segments: from base to
the Forward Edge of the Battle Area (FEBA) and, from FEBA to the desired target.
The former is derived from consideration of the enemy's surface attack capabilities
and available friendly runways and takeoff and landing design constraints. A base-to-
FEBA radius of 150 nm puts the airfield beyond the majority of threats but still
vulnerable while a distance of 250 nm from FEBA provides relative safety. A nominal
leg of 200 nm, coupled with a shoit takeoff and landing capability (see below) provided

a practical solution and was subsequently imposed on ADCA.

The required FEBA-to-target distance is obviously a function of the targets loca-
tion. Figure 2 illustrates the distribution of all potential targets beyond FEBA. A
penetration of 150 nm into enemy territory puts most of the targets within range. A
radius of 250 nm puts the majority of high value targets within striking distance (not

indicated in Figure 2). A nominal FEBA-to-target range of 200 nm was selected

for ADCA, thereby imposing a total radius requirement of 400 nm. The suggested profile

to accomplish his mission is shown in Figure 3. The capability of existing and

planned aircraft to perform the SPI¥ mission is compared with ADCA on Figure 2.

Available runway length is both a prime design factor and operational considera-
tion, Figure 4 summarizes the number of usable runways available to SPIF as a
function of runway length for a typical scenario. Superimposed on this plot is an esti-

mate of damage levels that might occur in the event of enemy strikes. The results
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indicate a region of available runway length that could be used for design purposes.
A takeoff and landing distance (ground roll) of 3200 ft each, has been selected for the
ADCA. This capability will typically allow the use of at least 70 existing runways.

2.4 POINT PERFORMANCE CONSIDERATIONS

Point performance constraints were imposed on ADCA to ensure that a
flexible, versatile system was considcred and studied. In this process, a numbcer of per-
formance items were reviewed relative to the current threat and existing designs.
These items include among others, acceleration and maneuverability. Figure 5
presents the sustained and instantaneous g levels required to outperform the anticipated
airborne and missile threats. Nominal ADCA lcvels are highlighted. Level flight
acceleration from 0.8M to 1.6M at 35,000 ft is shown n Figure 6 for current threat
aircraft. As indicated, the minimum acceleration time of 80 seconds required to

match the lowest threat was imposed in ADCA.

Figure 7 summarizes the tactical requirement desired in a SPIF aircraft and
imposed on ADCA for its derivation and anaiysis. A suggested tradable (study) range
is indicated in Figure 7, with selected sensitivities to the nominal levels withir. this
tradable range presented in Section 4.

Finally, Figure 8 presents the relative average of four performance items as a
function of relative supersonic radius. The overall capability of an ADCA (or SPIF)
designed to meet the selected nominal requirements of Figure 7 is shown to exceed

both the threat, and existing and future enemy aircraft.

2.5 PAYCFF ANALYSIS

The flow diagram in Figure 9 illustrates the logic used in performing the Design/
Performance/Cost tradeoff analysis. Major inputs include ADCA performance/design
parameters and a consideration of the threat and scenario. Life Cycle Cost (LCC)
analysis was completed on a number of parametric designs. A survivability analysis
was conducted on typical ADCA designs in order to assess the losses expected in a
high threat environment. Total force levels were computed by combining an initial buy
of 300 aircraft plus the attrited aircraft expected (No + Nattr.)' Payoff analysis is
portrayed by the cost to obtain a fixed level of effectiveness, i.e., sorties flown to
targets killed as a function of design tradeoffs.
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: An example of a design tradeoff analysis is presented in Figure 10. The results
G |

;| show the increase of LCC for a buy of 300 aircraft as penetration Mach number is
varied. When combat losses for 5000 sorties are accounted for,

are projected. It is apparent that although hj

further increases in LCC

gh ECM and a large raid size were assumed,
the cost impact of losses would be significant. When losses due to only SAM's are
considered, the cost curve is fairly flat in this region

a preferred design dash speed. However, when air-

» thus precluding a clear choice of

to-air losses are included, large
savings in LCC are realized with Supersonic dash out to Mach 2.0,

To test the sensitivity of the assumptions governing losses, the curves in Figure

11 were constructed. This plot degrades overall combat losses from a high level of

100% down to 0 in 259 increments. It should be noted that a step in the cost curve

occurs when changing inlet designs from a fixed to variable inlet geometry. The results
show that when there is no combat attrition, a subsonic aircraft is the least expensive
and preferred design. As losses increase to a high level of 100% of those shown in
Figure 10, the preferred dash Speed shifts dramatically out to Mach 2. 0. If, on the
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other hand, losses can be held to only 50% of the computed value, a moderate dash of

Mach 1.6 will be beneficial and sufficient in terms of costs and reduced complexity.

A review of ADCA survivability analysis indicates the following:

Probability of mission success is highly dependent on assumptions for

tactics, raid size, penetration aids, and use of support aircraft

Probability of loss from surface-to-air defenses decrease approximately

15% with increase in penetration speed from Mach 0.9 to 1.6

Probability of loss to air-to-air defense decreases approximately 85% as
penetration Mach number is increased from 0.9 to 1.6M - less of an effect
above 1,6M

Combined SAM and AAA defenses exhibit significant reduction in effectiveness

as penetration Mach number is increased from transonic to supersonic.

Figure 12 illustrates the typical results of applying the payoff assessment
methodology. For this example, and to this point in time, the impact of cruise speed
and materials has been isolated. The data of Figure 12 show the distinct advantage of
an ADCA in the SPIF role, favoring both use of advanced composites and supersonic

: penetration.
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Figure 12. Initial Assessment
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Section 111
CONFIGURATION SCREENING

Configurations capable of performing the desired SPIF mission were evaluated
using Grumman's Rapid Aerospace Vehicle Evaluation System (RAVES) sizing programs.

Primary inputs for the studies were:

Strength-to-weight ratios of composite materials
Performance characteristics of the candidate engines

Mission requirement constants

Gross aerodynamic planform characteristics.

Each of these items will be discussed briefly in order to provide the rationale for

the inputs used in determining the chosen configuration.
3.1 COMPOSITE MATERIALS

The fundamental drivers in arriving at a particular ADCA configuration were,
understandably, the properties of the composites themselves. Grumman, in over ten
years of experience with composite materials, has accumulated a wealth of data indicat-
ing the siructural weight savings achievakle as a function of the amount and type of
composite material used. These data were used, in combination with the known
experiences of other aerospace corporations, to formulate the component-by -component
weight savings that could reasonably be expected by a relatively low cost (Design-to-
Cost) composite design and manufacturing apyroach., The composite usage goals and
expected weight savings resultant from such an approach are shown in Table 1. Also
shown in this figure are the weight savings that might e achieved in the same time
period by using advanced metal materials. These metal inputs were used for the metal

baseline study discussed elsewhere in this report.
3.2 ENGINE CANDIDATES

Engines considervd for the ADCA configuration were, by direction, confined to
those either presently in use, undergoing tests, or readily derivable from a current
model. Table 2 lists the candidates considered during the preliminary screening
process as well as several of their more important characteristics. The "fine-mesh"
evaluations centered about three models; the Pratt & Whitney F100(B); the General
Eleciric F404-GE-100, and the General Electric F101-GE-100, The TF30 series

13
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TABLE 1. WEIGHT REDUCTIONS OVER METAL AIRFRAMES
(AS USED FOR SIZING STUDIES)

Advanced Metal
Composites Aircraft
Component Weight Savings, % Goal, % Waight Savings, %
Fixed Wing—No Twist Control 28 87 9
~With Twist A=20° 26.5
a0° 23 N/A
o 87
60 17
~Double Delta 235
Swing Wing—No Twist Control 20 65 9
—With Twist Control 17 N/A
Tails & Canards—Slab 23 5 9
--Fixed 30 4 9
Body 20 72 3
Air Induction—Fixed Inlet 22 80 5
—Variable Injet 20 80 5
Jding Gear 16 40 10

engines were found to be non-competitive simply by virtue of their substantially lower
thrust to weight ratios, Other,

more advanced, J101 versions were avoided in keeping
mining what could be achieved with readily available
Performance characteristics supplied by the engine manufac

with the stated intention of deter

hardware, turers were

» but it is noted at

e completely from the quantitative screening
process. Subjective judgements also influenced the selection.

of the non-performance related consideration
posed ADCA engine,

this time that engine selection did not evolv

Table 3 shows some
8 that influenced the selection of the pro-

14
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TABLE 3. CANDIDATE ENGINE COMPARISON

F101

® Under development for B-1 (QT in '76)

® Meets ADCA mission/performance requirements

® Lightest TOGW with single engine installation

® PFRT performance deficiencies identified (not critical)
® Growth capability available

® Approx unit cost $1.2M

F404

Development program for F-18 not established (QT in '79)

Lightest twin engine aircraft

YJ101 highly successful in F-17 flight test but early on maturity cycle
Additional growth capability available

Approx unit cost $0.6M

F100

Basic engine QT '73 for F-15

ADCA requires growth version (B)

Potential development progiam cost $200M
Other growth options possible but not identified
Approx unit cost $1.1 to 1.6M

3.3 MISSION REQUIREMENTS

Other original mission requirement constants are listed in Table 4. The various
design weights are those required for the ADCA study while the range and cruise Mach
number requirements came from the Operations Analysis studies discussed in the pre-
vious section. Maximum Mach numYer and limit load factor requirements are consistent
with the desire to at least provide parity with the threat while keeping weight and cost
required to perform the desired mission to a minimum. The combat fuel allowance of

15% is admittedly arbitrary but appears to be a reasonable minimum required for
evasive maneuvering.

TABLE 4 OTHER SIZING INPUT DATA

® Uninstalled Avionics Weight: 1350 Ib
® Max Mach No.: 1(S.L.)/2(Alt)
® Cruise Mach No.: 1.6
® Fixed Weight (Gun Provision, Armor,
APU's, etc) 400 Ib
® Combat Fuel Allowance: 15% of Total Fuel
® Flight Design Gross Weight: TOGW — 20% Fuel
® Landing Design Gross Weight: TOGW -- 60% Fuel
+8000 Ib Stores
® Combat Weight: TOGW — 60% Fuel
® Radius: 200 nm Subsonic
+200 nm Supersonic
® Limit Load Factor: 6.5g
(Flight Design Gross Weight)
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3.4 AVIONICS

Probably the most subjective choice of requireme.nts is the uninstalled avionics

"3‘

weight of 1350 lb. The avionics system for the ADCA was sized anc developed to per-

form a SPIF mission and is based on 1975 to 1980 technology. The basic system
provides the ADCA with an all-weather capability and is consistent with the delivery

8 requirements of most inventory weapons as well as those under development. At the
heart of the fire control portion of the avionics system is a Synthetic Aperture Radar
(SAR) with a 28-in, planar array antenna and sufficient digital processing to recognize
L | the prime SPIF targets at ranges in excess of the outer launch envelope limit of GBU-
] 15 type weapons. The radar has an inherent air-to-air capability and could accom-
modate the delivery of the Sparrow missile for an A/A configuration.

Autonomous delivery of laser-guided ordnance required an electro-optics (E-O)

subsystem including a laser rangefinder/designator, FLIR and/or a T.V. Since the
performance of these devices is very sensitive to prevailing weather conditions, i.e.,

visibility, ceiling and relative humidity, which are generally unfavorable for the prime

SPIF scenario, they were not included in the basic fire control subsystem. For off-design

missions, such as the battlefield interdiction mission where it is anticipated that laser-
guided ordnance and E-O sensors would have a high utilization rate, the E-O sensor
suit would be accommodated in a self-contained missionized pod, thus unburdening the

~ basic avionics system by nearly 400 1b. The major elements comprising the basic
ADCA avionics system along with their weights are shown in Table 5.

3.5 CANDIDATE WING SHAPES

Aerodynamic planforms considered, encompassed virtually all wing types and con-

trol concepts available, consistent with the balance requirements implied by efficient
subsonic and supersonic cruise. The delta planform exhibited the best supersonic
aerodynamic characteristics, while aerodynamics consistent with transonic maneuvering
required morc conventional transonic swept-wing configurations. The trisonic wing
selected for the ADCA baseline is an optimized combination of the two. Variable sweep
was considered because of the obvious potential for matching the configuration to the

various flight regimes, while a fixed wing subsonic/ supersonic compromise was pro-
vided by the double dclta (trisonic) planform. Aerodynamic inputs provided for the
various planforms were the result of an amalgamation of historic Grumman and NASA

O
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TABLE 5. AVIONICS SYSTEM

Total
Subsystem Weight, Ib Weight
Communications 92
® UHF Comm 14
® Backup UHF 10
® VHF Comm 7
® Secure Voice 6
® Digital Data Link 31
® |FF Transponder 21
® Interference Blanker 3
Navigation 119
® Inertial (IMU) 10
® TACAN 28
® AHRS 19
® Air Data Computer 20
® UHF/ADF 7
® | ORAN 17
® Radar Altimeter 10
® |LS 8
Fire Control 556
® Synthetic Aperture Radar 420
® Central Computer 35
® Armament Control 101
® E-O Sensor Suit & Pod (380)
Electronic Support Measures 419
® Radar Homing and Warning 122
® DECM 204
® Chaff Dispenser 33
® Tail Warning Radar . 60
Displays & Controls 166
® Vertical Situation Display 66
® Head-Up Display 32
® Multi-Function Display 68
Total: 1,362
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data with results obtained from recent Grumman advanced configuration studies.
general, the aerodynamic inputs provided for the screening process represented sub-
sonic and supersonic cruise parameters consistent with a modest improvement over
recently demonstrated values, while transonic and supersonic maneuverability para-

meter estimates were based on wind tunnel demonstrations of recent Grumman designs
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to be acceptable and, in fact

3.6 PARAMETRIC SCREENING

Table 6 shows a typical configuration screen resulting from combining the
inputs discussed above with the nominal mission requirements of Table 4. As noted,
the delta and variable sweep configurations are materially heavier and can, therefore,
be readily discarded. The higher weights for the delta are the result of the low wing
loading required to provide acceptable takeoff and maneuvering performance while the
variable sweep configuration is primarily the victim of the reduced weight savings
made possible by using composites on such a vehicle. Providing the delta with a
retractable canard offers a substantial improvement, but the lack of an effective pitch
control device still results in a materially heavier solution than either the transonmc

or trisonic designs, Considering the various engine options within the trisonic and

transonic columns lead to the conclusion that the most cost-effective solutions are

either two F404 engines or a single F101,
6 are, therefore,

The four combinations circled in Table
left for further consideration. Considering the accuracy limita-
tions of the screening process, these four solutions are

Detailed studies of the transonic and trisonic configurations showed that while the
trisonic weight could be met, the transonic wing with aft-tail configuration resulted in

a less efficient supersonic cruise vehicle than had been assumed in the early studies.

As a result, the ""drawn" vehicles tended to be several thousand pounds heavier. The

increased size of the transonic/tailed configuration is primarily the result of super-
sonic trim drag induced by the down-loaded tail, Attempts to materially reduce or

eliminate the trim penalty resulted in unsatisfactorily high levels of subsonic instability

with its attendant control problems. A transonic wing/canard configuration which would

achieve the desired weight goal was postulated but discarded since it essentially repre-
sented a special case of the trisonic (double delta) family.

figuration survived the detailed screen by virtue of:

In brief, the trisonic con-

® The lower weight (and, therefore, cost) of the trisonic planform as
shown by the detailed studies , and

® The greater design (and mission) flexibility provided by the double delta
trisonic planform which could in the limit include optimal transonic or
supersonic variations.

Regarding engine selection, detailed studies showed both two F404's or one F101

» nearly equal in performance and configuration weight,

19

regarded as substantially equal.
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While the "one F101" configuration did ultimately become the lightest by several
hundred pounds; the slightly better point performance of the "two F404" configuration
made either equally suitable for purposes of the ADCA study. To a large extent, the
final choice of one F101 (double circled solution of Table 6) was largely subjective,

but might be more readily explained by considering each engine in a bit more detail.
3.6.1 F404-GE-400

The F404 engine development program for the U.S. Navy F-18 application was at the
time of the study not on a firm approved schedule. An engine qualification test QT) was

possible by 1979, but is tied directly to a go-ahead for the F-18 program.
The engine provided the lightest twin engine aircraft design in the ADCA studies.

The basic YJ101 turbojet engine (which is the basis for the F404 growth version) had
passed a Preliminary Flight Rating Test (PFRT) and was highly successful in the F-17
flight test program. However, the engine had not accumulated the engine operating hours
to reach the maturity level where most of the operational or design problems will have
surfaced. Growth potential up to the 20,000 b thrust class is available primarily through
turbine temperature increase in the J101/F404 design. Significant growth steps, over
17,000 1b class, will require development well into the 1980's.

3.6.2 F101-GE-100

This 2.0 bypass ratio, afterburning turbofan is currently under development for
the U,S. Air Force B-1 bomber. The program is on schedule with engine Qualification
Test (QT) in July 1976 and Defense System Acquisition Review Council (DSARC) III produc-
tion decision expected by November 1976. The F101 cycle is unique in that its performance
characteristics have, by coincidence, been tailored to the ADCA transonic and supersonic
sizing conditions. It is also the only current engine that has been specifically designed for

sustained supersonic cruise.

The engine, as is, meets the ADCA mission/performance requirements with the
lightest TOGW (single engine installaticn) of all candidates evaluated in detail.,
Deficiencies in engine performance identified since PFRT are not critical to the ADCA
design. The F101 has growth potential available through increased turbine temperature
and overall pressure ratio.

Production unit cost of the F101 is competitive with the other candidates at an
estimated $1.2 million for large production quantities., Comparable estimates for the

F404 put its unit cost at or just below $0.6 million,

21




Of the two candidates, the F'101 was the closest to qu
figuration studies for ADCA and, therefore, has the lowest

potential availability in the time period under ¢

alification during the con-

risk associated with its
onsideration,

In essence then, the choice of the single

F101 configuration is largely the result
of the "reality" of the engine

» it gives an acceptable answer

"as is." A secondary
consideration was the subsonic efficiency of the F101, Whil

e the design mission has
a relatively long supersonic cruise ieg, only about 409 of the total fuel is expended
supersonically, placing less of a Premium on supersonic efficiency than one might
intuitively expect, Considering this, in conjunction with the fact that most aircraft
hours are accumulated in training and most tr

aining would be subsonic » led to the
realization that an engine

suzh as the F101 would result in substantial and increasingly
important fuel savings.

3.6.3 Summary

While either the two F404 trisonic configuration or the single F101 trisonic

configuration could have served equally well for the stated purpose of the ADCA study,

the single F101 was chosen to lend the confidence that would be demanded for a real
hardware program intended to satisfy
report,

the requirements delineated earlier in this




Section IV

VEHIC LE DEFINITION

The screening process, outlined in Section III, evaluated various combinations of
engines and airframes. As noted in that scction, the preferred vehicle selected as a
baseline to cvaluate structural details is a trisonic configuration with an afterburning
F101-GE~-100 enginc. This vehicle with its large unbroken surfaces and minimum
number of acccss panels, is particularly suited to the use of composite materials

while simultaneously meeting the demands of a difficult, supersonic mission.

The output of the screening process, howevcer, was only the starting point for
the configuration. This compuier represcutation was given added credibility by
careful design and integration of components and systcms. In addition, continuing
analyses, tradeoffs, and testing were pertormed upon the configuration to develop a

reliable, achicvable, baseline design.

In particular, the achievement of excellent supersonic performance coupled with
transonic maneuver parity necessitated innovation and the intcgration of all techno-
logies. The selccted hybrid wing planform and closc coupled canard successfully meet

these diverse requirements.
4,1 GENERAL ARRANGEMENT

The aircraft, Figure 13, has a single F101-GE-100 afterburner-equipped turbofan
engine with variable C-D nozzle. Engine removal is accomplished by a built-in rail system,
which requires no major breaks in the primary fuselage structure. The inlet system is a
simple fixed ramp design.

The fuselage utilizes multi-purpose major structural bulkheads and frames. The
entire body structure is "idealized" for composite construction. A one-piece windshield
and manual side-opening canopy complete the eockpit enclosure. Conventional "free-fall"
landing gear has been incorporated into the design. Equipment and weapons aecess is
achieved via access panels and main landing gear bay doors. The M-61 gun is loeated
for optimum operation and aceessibility with ammo loading achieved by either drum

removal or external loading.

The fuel system consists of integral fuselage and wing tanks with a self-sealing
fuselage bladder tank containing sufficient protected "get-home" fuel. Total useable
fuel quantity was 11,750 lbs of JP-4 fuel.

23
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The aircraft is configured with both a landing drag chute and an over-run arrest-
ing hook. The vehicle conforms to all Air Force Ground Handling geometry requirements.

The irboard profile (Figure 14) depicts vehicle systems and subsystems arranged
for best performance and most reliable operation. The location of avionics, weapons

and crew systems in the forward section provides for direct access and easy maintenance.

Consideration of internal packaging during the design development ensures realistic
vehicle lines and makes for a design that is operationally sized from the outset.

At the conclusion of Phase I the vehicle payload was increased by Air Force
direction in order to better satisfy mission requirements. At the same time fuselage
speed brakes, and a landing drag chute, which had both been previously considered
were incorporated into the general arrangement. The general arrangement was also
revised to reflect the air-to-air missiles being moved from the pylon station to the wing
tip. Provisions for a pylon station are, however, still provided for alternate missions
and ferry flight. The revised vehicle payload which reflected a gun and ammo
weight of 600 1b and a store capability of 5000 1b increased the fuel required to perform the
identical mission to 12,675 lb. The increased fuel (925 1b) was accommodated by using part
of the available growth tank volume so that no change was required to the vehicle external
configuration. Since wing surface area was not increased, the wing loading increased from

90 psf to 99 psf. These revised weights are reflected in all further vehicle performance data.

4.2 TANDEM CREW CONFIGURATION

The ADCA aircraft can incorporate a two-place cockpit.” The additional (rear) crew
station meets all geometry requiremerts for a second pilot except for vision requirements.
The desired fuselage body camber, precludes providing the additional height required for
the standard design point eye position. This cockpit geometry, however, is presently
incorporated in the TF-15 aircraft, The tandem crew configuration is shown in Figure 15.

An enlarged canopy and revised upper (Forward Section) fuselage skin panels are the
only major structural rework required, Primary fuselage bulkhead and frames could be
built into the single place vehicle that would only require relocation of avionics units to

provide for the installation of the rear seat., The additional growth required in the ECS
system could be added behind the present ECS units,

The M-61 gun and ammo installation, if required, would remain untouched. Structure
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required to install the instrumentation associated with the aft pilot appears to be of a

secondary nature.

4.3 WEIGHT AND BALANCE

The reduction (percent) in structural weight due to advanced composites and 1930
metals is shown in Table 1. These sav «ngs are applied to the weight estimates from our

statistical analysis that has a population of some 42 aircraft constructed with conventional
materials,

The stated savings are based on detailed studies of recent composite applications and
conceptual studies on the effects of items such as twist control. These savings are within
the range represented in Figures 16 through 20,

The 1980 metal baseline lovels represent F-14, F-15 and F-16 technology. Various

components of these vehicles wer= compared with estimates of their weight in conventional

materials from our statistical analysis to evaluate the effects of 1980 metals.

The weight statement shown in Table 7 repreésents the final weights of the
ADCA vehicle. This vehiclc has changed in several ways since the end of Phase I of
this project. A drag chute system and grounding provisions have been added, along with
a gun and ammunition weighing 600 b, The store cairrying capability has been in-
creased to 5000 1b without degrading the basic SPIF mission, The air-to-air missiles
were moved to the wing tips to eliminate the pylon and further reduce drag. The wing
weight was updated, using the Weights Group W-5 (AMSA) program to reflect the
latest thickness variations and stiffness requirements. The body weight shown is an
output of the Weights Group W-9 Semi- Analytical Fuselage Estimate (SAFE) program.

Programs such as Aero Surface Multi-Station Analysis (AMSA) for wings, and SAFE
for tuselage allowed the weights group to move away from statistical weights to semi-analyt-
ical weights. These programs analyze the major structural components of the wing (i. e.,
wing box) and fuselage (i.e., shell and longerons) based on the loads, geometry and stiffness
requirements. Only secondary structure is left to statistical analysis. Sensitivity to geom-
etry, loads, material and stiffness changes can be more accurately assessed, and tradeoff
studies performed with these programs. The SAFE program allows a fuselage to be sub-
divided into any number of convenient sections, it can handle complicated geometry, and
allows for effectiveness factors on longerons, These programs were developed under the
Rapid Aerospace Vehicle Evaluation System (RAVES) system and were slanted toward quick
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turnaround terminal operation.

Both AMSA and SAFE are metal-oriented programs. To reach composite values,
a percentage saving for compsites is applied to the weights these programs calculated.

These savings were based on many in-house studies done at Grumman, and information
gathered from studies done by other companies, To develop added confidence in these

values, the wing was evaluated using the Weights Group W-12 Composite Aero Surface

Multi-Station Analysis (CAMSA) program. This recently developed program is similar to
AMSA except it evaluated the wing box in composite material. Based on our B-1 horizontal
stabilizer experience, correlation factors were developed for the program. The weight
this program predicts for the wing box confirms the attainability of our estimates of com-
posite savings compared to metal values,

Figure 21 shows the cg travel for the SPIF mission. The fuel usage plan il-
lustrated was chosen to minimize cg travel during the mission and maintain similar

handling characteristics of the vehicle for various legs of the mission. This plan saves
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TABLE 7. SUMMARY GROUP WEIGHT STATEMENT

| Group _ -
Configuration ADCA x wX
Wing (Incl. Surfaces) 3,208 664. 2,130,112
Canard Including C/T 1,143 410. 469,145
Tail {Incl. Surfaces) 316 729. 230,364
Body 3,320 497, 1,650,040
Alighting Gear 1,591 541. 860,731
Arresting Gear 72 660. 47,520
Engine Section 87 719. 62,553
Air Induction 882 512. 451,584
Moisture/Lightning Protection 275 540. 148,500
Drag Chute System 76 780. 59,280
Structure Subtotal — Lbs. 10,970 557 6,109,829
Struct/Togw//Struct/W.E.
Propulsion
Engine Installation " 4,235 729. 3,087,315
Accessory Gearbox " 90 653. 58,770
Engine Shroud 50 n7. 35,850
Exhaust System *
Engine Controls 25 M7. 14,500
Starting System 49 689. 33,761
Propeller
Lube System 70 700. 49,000
Fuel System 565 568. 320,920
Fit. Cont. {Incl. Auto-Pilot) 978 569. 556,482
Auxiliary Power Plant (EPU) 165 575. 94,875
Instruments 160 410. 65,600
Hydraulic And Pneumatic 481 560. 269,360
Electrical 584 560. 327,040
Avionics (Install-Factor=1.25) 1,690 370. 625,300
Armament 160 299. 47,840
Furnishings And Equipment 286 290. 82,940
Air Conditioning 338 340. 114,920
Anti-lce Group 50 265. 13,250
Load And Handling Group 10 560. 5,600
Gun And Ammo 600 350. 210,000
Contingency
Weight Empty — Lbs. 21,556 562.4 12,123,152
Crew 240 280. 67,200
Fuel — Unusable 127 573. 72,711
Usable 12,675 573. 7,262,775
Qil 100 710. 71,000
Stores — A/G 5,000 564. 2,820,000
A/A 500 707. 353,500
Racks, Launchers 300 612. 183,600
Equipment 55 280. 15,400
Useful Load 18,997
ZFZ Stores Gross Weight 22,378 560.1 12,633,123
Zero Fuel Gross Weight 27,878 563.4 15,706,623
Take-Off Gross Weight 40,553 566.4 22,969,398

*Main Engine(s) Only
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the protected aft fuel tank as the "get home' fuel tank and uses all other tanks at such
a rate as to empty them at the same time. The cg seems to have a forwardmost posi-

tion of 45 MAC and an aftmost position of 8.5% MAC.

The geometry of the bascline vehicle was frozen at the end of Phase I, Using
this geometry and the latest information on drag, the vehicle was run using the W-2
Computerized Initial Sizing Program (CISE) program to determire fuel required to complete
the SPIF mission. The CISE program is a multidisciplined program which simulates flying
a vehicle through the mission and iterates to find a vehicle which will meet mission require-
ments. Using this program, three other vehicles were evaluated. The first was an equiva-
lent all-metal baseline, the second was a composite substitution vehicle, and the third was
an all-composite vehicle with an advanced (not off-the-shelf) engine. To keep the compari-
son as valid as possible, the same restrictions were placed on these vehicles as on our base-
line vehicle. The results are shown in Figure 22. The weights shown are from CISE runs,
which are statistical data. The summary group weight statement uses the baseline CISE
run as a starting point, and using the drawing of the baseline vehicle (Figure 13), a more
detailed analysis was utilized to recalculate the varicus components. The weight of the
actual baseline vehicle does not match the weight of the CISE baseline vehicle for those
reasons. Because drawings and loads do not exist for the other vehicles in the study, the

comparison, to remain fair, was run on the results of the CISE runs.

The study showcd that even though a composite substitution vchicle is only 5%
lighter than the all metal baseline, a vehicle designed around composites from the
sizing stage is about 247 lighter. This is due to the iterated effect of the changes on
the vehicle size. The penalty for using an off-the-shelf enginc rather than an
advanced engine is over 5% in the composite baseline. A similar penalty is also inherent

in the metal baseline.

Another study performed was one that judged the effect of varying the percentage of
composites in the structural weight. This was done by using a "rubber" F-101 engine and
a constant wing loading. The percentage of composite was changed by making individual
components all metal until the whole vehicle was metal, The 100% composite savings were
estimated knowing that the low bearing allowables of composites make it impractical to
use only composites. We were able to estimate the resultant savings due to this by

comparing weight-to-bearing strength of composites to titanium, Based on this information
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the curve in Figure 23 was developed. It indicated that the optimum percentage of

composites for weight is at about 75%. Due to limitations in time, this study was run using

the CISE program with growth factors to try and simulate the baseline vehicle. The all-

metal vehicle doesn't match the all-metal baseline because it has different limitations. This
study is just trying to show sensitivity and a trend,

4.4 AERODYNAMICS AND VEHICLE PERFORMANCE

| The design mission selected for the ADCA study is that of a Supersonic Penetration

| Interdiction Fighter (SPIF). This selection provides a demanding set of requirements, but

yields the maximum potential payoff for the unrestrained use of composite materials.

Furthermore, this mission addresses, better than any other, the serious problems of

survivability and mission effectiveness in the advanced SAM and Ground Control Intercept
(GCI) threat environment of the 1980's and beyond.

The mission profile is illustrated and detailed in Figure 24. It is 2 400 n mi

radius, deep strike mission, with equal sub- and supersonic legs, delivering a 5,000 lb

payload to the target at supersonic speed. The 1.6 Mach cruise speed was selected based

upon design/performance/cost tradeoff analysis. This included consideration of perform-

ance parameters, design complexity, threat environment, and potential aircraft losses,
upon life cycle cost and mission effectiveness.

. The weapons payload, and other significant design factors are listed in Tabie 8.

These were selected by the Flight Dynamics Laboratory to be representative of the 1980's

time frame, and to burden the ADCA design study with a meaningful design challenge. The

vehicle carries gun and ammunition, and 5,500 b of advanced air to ground and air to air
weaponry.

The performance requirements listed in Table 9 were chosen at the onset of the
ADCA vehicle design study. They were imposed to ensure that a flexible, versatile system
would be developed to outperform all existing airborne and missile threats.
mean feat, when one seeks to combine across-the-

This is no

& board dominance in combat maneuver-
; ability, with supersonic cruise, and a primary ground attack role. As Table 9 shows,
! the ADCA performs this difficult task very well. The vehicle takeoff gross weight is

40,553 lb, including 12,675 1b of fuel and a full complement of weapons. It uses an
A existing GE-F101 engine, and is a realistic and practical design for a 1980's time frame
! I0C.
o
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Figure 24, ADCA Mission Profile Supersonic Penetration Interdiction Fighter (SPIF) Mission
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TABLE 8. PAYLOAD AND DESIGN FACTORS

¢ Avionics Complement 1,350 Ib (uninstalled)
”1 Armament:
3
2 Advanced Air-to-Ground Guided Weapons 5,000 Ib
% 2 Advanced Air-to-Air Missiles 500 Ib
| M-61 Gun and Ammo, 600 Ib
|
! Maximum Mach No, 1.0 @ Sea Level
2 2.0 @ Altitude
b i
f Limit Load Factor 6.5 @ Flight Design Gross Weight
j
3
TABLE 9. VEHICLE PERFORMANCE
Requirement A/G Stores Retained A/G Dropped
: Maneuverability.
Instantaneousg @ M=* 5/50K ft 45 6.5 (Limit Load)
: Sustained g @ M 0.5/30K f1* 3.0 31 37
Sustained g @ M 1.2/30K ft 4.0 4.1 49

R W Sustained g @ M 1.6/50K ft 21 26
"~
Acceleration Time
3 M. 8 to 1.6 @ 35K ft 80 sec 83 sec 66.5 sec
;; Takeoff/Landing Distance, ft 3200/3200 3150/2550
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